Fortsätt till huvudinnehåll

LINQ

Now that I am working with development in C# I have started looking into some .NET specific stuff. Right now I am deep diving into Language-Integrated Query, LINQ.

LINQ can often be used to replace loops where you iterate over a set of values and perform some kind of operation on the values that matches a certain criteria. For example, assume you have a large set of random integers and you want to extract those that are divisable by 7. The standard way to solve this is to use a for-loop and copy the numbers where n % 7 == 0.

With LINQ this becomes a one-liner:

var divisableBySeven = (from i in ints where (i % 7 == 0) select i).ToArray();

Pretty neet.

Kommentarer

Populära inlägg i den här bloggen

C# Enum as bit field

Bit field enum Whenever you wish to express combinations of properties of an object, bit fields are a good way to accomplish this. As a simple example, consider a file in the file system. It can be Readable , Writable , Hidden or a combination these. The different attributes can be defined as an enum : [Flags] public enum FileAttribute {   None      = 0b0000;   Readable  = 0b0001;   Writeable = 0b0010;   Hidden    = 0b0100; } To indicate that this enum is expected to be used as a bit field I have defined it with the FlagsAttribute . It is important to understand that the FlagsAttribute does nothing more than making some changes to how the ToString method of the enum works, making it possible to print out all flags. It does not introduce any validation or special treatment of the enum in any other way. I have defined the values of the different fields of the enum using binary representation, this should make it even more clear that this is a bit field and which bi

Codility tasks - Part I

I was recently faced with two codility tasks when applying for a job as an Embedded Software Engineer. For those of you who arn't familiar with Codility you can check out their website here:  www.codility.com Task one - Dominator The first task was called Dominator. The goal was to, given a std::vector of integers, find an integer that occurs in more than half of the positions in the vector. If no dominator was found -1 should be returned. My approach was to loop through the vector from the first to the last element, using a std::map to count the number of occurences of each integer. If the count ever reached above half the size of the vector I stopped and returned that integer and if I reached the end without finding a dominator I returned -1. So was that a good approach? Well, the reviewer at the company rated the solution as 'pretty ok'. His preferred solution was store the first integer in the array and set a counter to 1. Then loop through the remaining i